Fancy Fence

Everybody knows that Balázs has the fanciest fence in the whole town. It's built up from N fancy sections. The sections are rectangles standing closely next to each other on the ground. The *i*th section has integer height h_i and integer width w_i .

We are looking for fancy rectangles on this fancy fence.

A rectangle is fancy if:

- its sides are either horizontal or vertical and have integer lengths
- the distance between the rectangle and the ground is integer
- the distance between the rectangle and the left side of the first section is integer
- it's lying completely on sections

What is the number of fancy rectangles? This number can be very big, so we are interested in it modulo $10^9 + 7$.

Input

The first line contains N, the number of sections.

The second line contains N space-separated integers, the *i*th number is h_i . The third line contains N space-separated integers, the *i*th number is w_i .

Output

You should print a single integer, the number of fancy rectangles modulo $10^9 + 7$. So the output range is $0, 1, 2, \ldots, 10^9 + 6$.

Examples

1

Explanation

There are 5 fancy rectangles of shape:

There are 3 fancy rectangles of shape:

There is 1 fancy rectangle of shape:

There is 1 fancy rectangle of shape:

Constraints

 $\begin{array}{l} 1 \leq N \leq 10^5 \\ 1 \leq h_i, w_i \leq 10^9 \end{array}$

Time limit: 0.1 s Memory limit: 32 MiB

Grading

Subtask	Points	Constraints
1	0	sample
2	12	$N \leq 50$ and $h_i \leq 50$ and $w_i = 1$ for all i
3	13	$h_i = 1$ or $h_i = 2$ for all i
4	15	all h_i are equal
5	15	$h_i \le h_{i+1}$ for all $i \le N-1$
6	18	$N \le 1000$
7	27	no additional constraints

