
Central European Olympiad in Informatics 2020 Day1-ENG

Fancy Fence Solution

Topics Problem author
Sorting, (DSU), Maths, Sieve Máté Busa

Subtask 2
N, hi ≤ 50, wi = 1

There are at most 504 different rectangles.
For all of them, we can check if they are fancy or not. This can be done in constant time
with some precomputation.

Subtask 3
hi = 1 or hi = 2 for all i.

Consider a rectangle with height 1 and width K.
Lemma: There are

(
K+1

2

)
fancy rectangles in it.

Proof: There are K − p + 1 fancy rectangles with width p:

K∑
p=1

(K − p + 1) =
(

K + 1
2

)

Now we can solve subtask 3: There are 2 types of fancy rectangles, the ones with height 1,
and the ones with height 2.
We can easily calculate the answer, applying the previous lemma in O(N) time.

A helpful observation
Consider a rectangle with height A and width B.
Let’s denote the number of fancy rectangles contained within this big rectangle by TA,B. Now
we have

TA,B =
(

A + 1
2

)
·
(

B + 1
2

)
Proof:
We can chose

(
A+1

2

)
different horizontal lines to form the horizontal side of a fancy rectangle.

The same holds for the vertical side.

Note that
(

X
2

)
= X(X − 1)

2 , where X(X − 1) is always divisible by 2.

1 Tuesday 25th August, 202013:03



Central European Olympiad in Informatics 2020 Day1-ENG

Subtask 4
The solution follows easily from the previous lemma.
This subtask can be solved in O(N) time.

Subtask 5
The heights are in increasing order.

Let Wi be the sum of section widths from the ith to the Nth section.
The answer is given by the formula:

N∑
i=1

Thi,Wi
− Thi−1,Wi

,

where h0 = 0.
This way, the subtask can be solved in O(N) time.

Subtask 6
N ≤ 1000

For all 1 ≤ i ≤ j ≤ N , we calculate the number of fancy rectangles whose left side is part of
the ith section and right side is part of the jth section.
Let H be the minimum of section heights from the ith to the jth section.
Let W be the sum of section widths from the ith to the jth section.
The number of fancy rectangles is (if i 6= j):

TH,W − TH,W −wi
− TH,W −wj

+ TH,W −wi−wj
,

which can be precomputed for all H.
This subtask can be solved in O(N2).

Subtask 7
Original constraints.

Sorting

Let’s sort the sections in decreasing order according to their heights.
Let us denote the original index of the i section by pi. In the ith step, we calculate the number
of fancy rectangles lying exclusively on the first i sections.
Let x be the smallest index for which the xth, x + 1th ... pi − 1th sections preceed the pith
section.

2 Tuesday 25th August, 202013:03



Central European Olympiad in Informatics 2020 Day1-ENG

Let y be the biggest index for which the pi + 1th, pi + 2th ... yth sections succeed the pith
section.
Write

Xi =
pi−1∑
j=x

wj, Yi =
y∑

j=pi+1
wj.

In the ith step, the answer increases by Thpi ,Xi+Yi+wpi
−Thpi ,Xi

−Thpi ,Yi
. To calculate values Xi

and Yi efficiently, we have to combine consecutive intervals (e.g. using DSU or similar, more
simple methods). At the start, there are N intervals, each one consists of exactly one section.
In the ith step, we shall combine the sections from the xth to the yth. For all intervals, the
sum of widths of sections contained by the interval has to be stored as well.
This subtask can be solved in O(NlogN) time.

Linear

Let’s iterate through the sectionss from left to right maintaining a stack of sections with the
following property: from bottom to top the height of sections are increasing and after the ith
section is processed every fancy rectangle not present in the stack is already counted.
When at the ith section three cases are possible, let the top of the stack contain a section
with dimensions H ×W :

• if hi = H we can easily modify W and increase it by wi not hurting the invariant
described above

• if hi > H we can just push a hi × wi rectangle to the top of the stack

• if hi < H then we have to pop some elements from the stack until hi will be greater
or equal to the height of the section on the top of the stack. While doing the popping
we accumulate the width of the new top element (i.e. the sum of widths of all elements
popped plus wi) and also with a similar strategy to subtask 5 the number of fancy
rectangles that will not be present in the stack should be calculated.

After processing every section we can use the solution to subtask 5 to count the remaining
fancy rectangles or even better just create a 0× 0 dummy section after the ones in the input.
Overall the time complexity of this solution is O(N) since every rectangle is pushed and
popped exactly once while doing a constant amount of operations.

3 Tuesday 25th August, 202013:03


