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Star Trek Solution

Topics Problem author
graph, tree, winning-losing states, dynamic programming, dfs Máté Busa

Subtask 2
N = 2

The Captain always wins.
A possible winning strategy: she uses only tunnels.
In this way, Gábor is forced to use only portals. After using a portal they will be in a new
universe where the Captain can use the tunnel. So Captain can always move after Gábor,
but there is a point where Gábor can’t move. That’s why Gábor can’t win.
The answer is the total number of possible placements: 4D. it can be computed in O(logD)
operations via fast exponentiation.
This subtask can be solved in O(logD)

Winning-Losing states
Lets play this game in a rooted tree where the first player moves from the root r.
Let’s call a node L(osing)-state if the player moving from there can’t win. Call that node
W(inning)-state otherwise.
The players can only increase the distance from r; that’s why every leaf is an L-state.
A node is W-state iff it has an L-state child.
The root’s state can be calculated in O(N) operation with dfs if the size of the tree is N .

L : set of nodes that are L-states as the root
W : set of nodes that are W-states as the root

Subtask 3
N ≤ 100, D = 1

We test all possible placements. A placement will give us a tree of size 2N rooted at P 0
1 . For

all possibility we check the root’s state. There are O(N2) different placements and it takes
O(N) operation to check a single one.
This subtask can be solved in O(N3)

Critical L-state
It’s clear that we have D + 1 trees of the same structure and they are connected into a bigger
tree. This big tree is rooted at P 0

1 , but all small trees have a root-like node in the big tree
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(P 0
1 in the first universe and P i

Bi−1
in the ith parallel universe).

We will work now with the small tree of size N .

Let’s root this tree in an arbitrary node r. Let’s call this tree treer. Let’s denote the parent
of node c by P (c).
Connecting a new node y with a given state to a node x (of the original tree) may change
some states.

It can be proved that the state of x changes iff x and y are both L-states. In this case, x will
become W-state. This may cause further changes in the tree:
If P (x) has only one L-state child (x), then its state will also change from W to L.
If P (P (x)) is L-state, then its state will also change from L to W.
P (P (P (x))) will act like P (x). This wave of change will stop at some node z, where z will be
the uppermost node whose state changed. We call x a critical L-state if z = r.

Cr : set of nodes that are critical L-states when r is the root.
Cr can be computed in O(N) time for a given r using dfs.

Subtask 4
N ≤ 1000 and D = 1

We should connect 2 uniform trees of size N. The first tree is rooted at index 1 (the starting
node).
If the root of tree1 is W-state it will only change it’s state if we connect a L-state to one of
its critical node. That’s why; the answer is N ∗ |W |+ (N − |C1|) ∗ |L|.
If the root of tree1 is L-state it will only change it’s state if we connect a L-state to one of its
critical node. That’s why; the answer is |C1| ∗ |L|.
Calculating |C1| requires O(N) time while calculating |L| and |W | requires O(N2).
This subtask can be solved in O(N2)

Subtask 5
D = 1

We must calculate |L| and |W | faster than in subtask 4.
Let’s say the original tree is rooted in v and we want to reroot this tree in one of its neighbors,
u. We can see that only v’s and u’s state may change while doing this. The new states can be
computed in constant time if we know the number of L-state children for every node (which
can be computed by a single dfs).
We can reroot the tree easily in all nodes with one dfs.
This subtask can be solved in O(N)
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Subtask 6
N ≤ 1000, D ≤ 105

For all possible roots r we calculate |Cr|. This takes O(N2) time.
Let us define LD as the number of ways to

• choose a starting node, and

• install portals,

such that the first player will lose, when considering the game with D parallel universes (plus
the starting one).
By definition, the W/L status of the starting node v will change if and only if we add an
edge from a node in Cv leading to an L state. Therefore, the number of ways to add all D
portals in a way that changes the status of the starting node is

|Cv|LD−1.

We can now calculate (LD)v, the number of ways to make v a losing root with respect to the
remaining D (plus one) universes: if v is W, then we have to add the remaining portals in
a way that changes the status of v; if v is L, then we have to add them in any other way.
Hence,

(LD)v =

|Cv|LD−1 if v ∈ W

N2D − |Cv|LD−1 if v ∈ L.

Clearly,

LD =
∑

v

(LD)v

=
∑

v∈W

|Cv|LD−1 +
∑
v∈L

(N2D − |Cv|LD−1)

= |L|N2D +
(∑

v∈W

|Cv| −
∑
v∈L

|Cv|
)

LD−1

= |L|N2D + E · LD−1 where E ,

(∑
v∈W

|Cv| −
∑
v∈L

|Cv|
)

.

In the last universe, we have L0 = |L|, by definition.
The answer to the original question is the number of ways to make the starting node v1 into
W, which is given by

Solution = N2D − (LD)v1 .

We can calculate this value in O(D) time using dynamic programming.
This subtask can be solved in O(N2 + D)
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Subtask 7
D ≤ 105

We must calculate |Cr| for all r faster than in subtask 6.
We can use the idea described in subtask 5 (when calculating |L| and |W | fast).
This subtask can be solved in O(N + D)

Subtask 8
Original constraints.

Solution 1:

This subtask can be solved like subtask 6 but we calculate L1, L2, L4, L8 ... (i.e. L2i), where
we can compute L2i from L2i−1 . With the bit-representation of D − 1 we can calculate LD−1
in O(logD) operations.
This subtask can be solved in O(N + logD)

Solution 2: Closed Form

To solve the last subtask, we need to calculate LD−1 in sub-linear time. To do this, we can
solve the recurrence relation, which yields the closed form

LD−1 = |L|N
2D − ED

N2 − E
.

This could be calculated via O(log D) exponentiation and modular inverse, but this is not
necessary: we can easily eliminate the division by writing a , N2 and b , E, and using the
well-known identity for (aD − bD) to get

LX = |L|
X∑

k=0
akbX−k.

This can be calculated in O(log D) time, by repeatedly halving:

L2X+1 = (bX+1 + aX+1)LX

L2X = bX+1LX−1 + |L|aXbX + aX+1LX−1.
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